Calogero-sutherland-moser Systems, Ruijsenaars-schneider-van Diejen Systems and Orthogonal Polynomials

نویسندگان

  • Ryu Sasaki
  • R. Sasaki
چکیده

The equilibrium positions of the multi-particle classical Calogero-Sutherland-Moser (CSM) systems with rational/trigonometric potentials associated with the classical root systems are described by the classical orthogonal polynomials; the Hermite, Laguerre and Jacobi polynomials. The eigenfunctions of the corresponding single-particle quantum CSM systems are also expressed in terms of the same orthogonal polynomials. We show that this interesting property is inherited by the Ruijsenaars-Schneider-van Diejen (RSvD) systems, which are integrable deformation of the CSM systems; the equilibrium positions of the multi-particle classical RSvD systems and the eigenfunctions of the corresponding single-particle quantum RSvD systems are described by the same orthogonal polynomials, the continuous Hahn (special case), Wilson and Askey-Wilson polynomials. They belong to the Askey-scheme of the basic hypergeometric orthogonal polynomials and are deformation of the Hermite, Laguerre and Jacobi polynomials, respectively. The Hamiltonians of these single-particle quantum mechanical systems have two remarkable properties, factorization and shape invariance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibrium Positions and Eigenfunctions of Shape Invariant (‘Discrete’) Quantum Mechanics

Certain aspects of the integrability/solvability of the Calogero-Sutherland-Moser systems and the Ruijsenaars-Schneider-van Diejen systems with rational and trigonometric potentials are reviewed. The equilibrium positions of classical multi-particle systems and the eigenfunctions of single-particle quantum mechanics are described by the same orthogonal polynomials: the Hermite, Laguerre, Jacobi...

متن کامل

Equilibria of ‘Discrete’ Integrable Systems and Deformation of Classical Orthogonal Polynomials

The Ruijsenaars-Schneider systems are ‘discrete’ version of the Calogero-Moser (CM) systems in the sense that the momentum operator p appears in the Hamiltonians as a polynomial in e±β p (β′ is a deformation parameter) instead of an ordinary polynomial in p in the hierarchies of C-M systems. We determine the polynomials describing the equilibrium positions of the rational and trigonometric Ruij...

متن کامل

Equilibrium Positions, Shape Invariance and Askey-Wilson Polynomials

We show that the equilibrium positions of the Ruijsenaars-Schneider-van Diejen systems with the trigonometric potential are given by the zeros of the Askey-Wilson polynomials with five parameters. The corresponding single particle quantum version, which is a typical example of “discrete” quantum mechanical systems with a q-shift type kinetic term, is shape invariant and the eigenfunctions are t...

متن کامل

Affine Toda Solitons and Systems of Calogero-Moser Type

The solitons of affine Toda field theory are related to the spingeneralised Ruijsenaars-Schneider (or relativistic Calogero-Moser) models. This provides the sought after extension of the correspondence between the sine-Gordon solitons and the Ruijsenaars-Schneider model.

متن کامل

Shape Invariant Potentials in “Discrete Quantum Mechanics”

Shape invariance is an important ingredient of many exactly solvable quantum mechanics. Several examples of shape invariant “discrete quantum mechanical systems” are introduced and discussed in some detail. They arise in the problem of describing the equilibrium positions of Ruijsenaars-Schneider type systems, which are “discrete” counterparts of Calogero and Sutherland systems, the celebrated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005